Введение[править]
LANправить
Local Area Network (LAN) — компьютерная сеть, сосредоточенная на относительно небольшой территории, ограниченной радиусом обычно в несколько километров (например: дом, школа, лаборатория, офис). В общем случае локальная сеть представляет собой коммуникационную систему, принадлежащую одной организации.
Также существуют локальные сети, узлы которых разнесены географически на расстояния более 12 500 км (космические станции и орбитальные центры).Основные характеристики LAN:
- высокая скорость передачи данных
- большая пропускная способность
- низкий уровень ошибок передачи
- использование качественных и хорошо защищенных линий связи (с ростом числа компьютеров стоимость может значительно увеличиться, поэтому LAN обычно содержат до нескольких десятков узлов)
- эффективный механизм управления обменом по сети
- заранее ограниченное количество компьютеров
WAN, в отличие от LAN, рассчитаны на неограниченное число абонентов, соответственно при конфигурации сети могут быть использованы не слишком качественные каналы связи, отсюда повышение числа ошибок и снижение пропускной способности. В WAN скорость передачи данных может быть значительно ниже, а механизм управления обменом не может быть достаточно эффективным, так как заранее не известно количество подключенных компьютеров. В целом, в WAN гораздо важнее не качество связи, а сам факт ее существования.
Топология сетиправить
Топология сети описывает конфигурацию компонентов сети и их связи. Топологическая структура сети делится на две основные категории: физическую и логическую.
Физическая топология описывает: схему прокладки кабеля, расположение узлов и взаимосвязи между ними. Физическая топология сети определяется возможностями устройств доступа, желаемым уровнем контроля и толерантности к ошибками, а так же стоимостью всех необходимых материалов. а логическая — движение сигнала между узлами в рамках заданной физической топологии.
Логическая топология, напротив, описывает поведение сигнала в сети или путь, которым движутся данные в сети от одного устройства к другому, независимо от их физической взаимосвязи. В многих случаях логическая топология не совпадает с физической, в том числе и потому, что она может динамически изменяться в соответствии с изменениями в конфигурации маршрутизаторов и коммутаторов.
Централизованная и децентрализованная система
также необходимо понимать такое понятие, как «Централизованная система» ЛВС — когда сеть построена таким образом, что в ней есть сервер или устройство, которые полностью контролируют работу в ЛВС. Также такая система может иметь собственную базу данных, в которой хранится определенная информация, с которой работают клиенты. Вся работа ограничена правами. У пользователей есть иерархическая система доступа.
Также очень часто бывает разбиение на подсети. Например, у нас в организации несколько отделов:
- Отдел кадров.
- Юридическое управление.
- Бухгалтерский учет.
эти сети необходимо разделить, чтобы они не имели доступа друг к другу. Для этого нужно правильно настроить систему. В децентрализованной системе обычно каждый компьютер и клиент имеют одинаковые права. Обычно используется в небольших локальных компьютерных сетях.
Как устроена локальная сеть с выделенным сервером
Сеть с выделенным сервером отличается от одноранговой на уровне логической организации взаимодействия.
Простейшая одноранговая локальная вычислительная сеть состоит из равноправных узлов (компьютеров). Каждый из них:
- определяет часть собственных ресурсов (файлы, папки, принтеры, приложения и пр.) как общие для ЛВС;
- предоставляет другим доступ к ним;
- управляет правами пользователей/узлов сети на использование этих ресурсов;
- получает доступ к общим ресурсам сети, размещенным на других узлах.
Фактически при такой организации все компьютеры сети остаются независимыми (не считая объединения по проводным или беспроводным каналам связи). Для обращения к ресурсам конкретного узла другим пользователям обязательно пройти авторизацию, с созданной на нем учетной записью.
Такая реализация может быть удобной, пока ЛВС объединят несколько (до 10) узлов. С увеличением их количества:
- пользователям придется запоминать огромное количество логинов/паролей для локальных учетных записей;
- обеспечить безопасность становится практически невозможно;
- существенно усложняется резервное копирование децентрализованной общей информации.
Сеть с выделенным сервером эффективно решает эти и другие проблемы.
В ней:
- общие ресурсы размещены на отдельном узле – сервере;
- обмен данными идет не между клиентскими компьютерами, а в паре клиент-сервер;
- для пользователя/узла создается серверная учетная запись, определяющая права доступа. Соответственно, воспользоваться ими может любой пользователь с каждой клиентской машины после успешной авторизации.
В практике гораздо чаще встречаются варианты совмещения, когда основные задачи решают выделенные серверы, а некоторая часть общих ресурсов распределяется по локальным узлам.
Основные задачи локальных вычислительных сетей
В общих чертах о назначении ЛВС уже было сказано выше, однако для описания полного функционала необходимо более подробно раскрыть эти пункты:
- Объединять активные сетевые устройства в кластер для организации общего доступа к ресурсам. Примером может служить корпоративный документооборот через общую папку (в широком смысле – файловый сервер), который позволяет сотрудникам эффективно обмениваться файлами в пределах ЛВС организации. Также можно сделать общедоступными многофункциональные устройства (принтеры и сканеры), обеспечив офисы собственными серверами печати.
- Создание сервера приложений или игр. Еще одна полезная функция ЛВС – это снижение количества используемой вычислительной мощности на стороне клиента. При этом программа или игра установлены на сервере, а на пользовательском устройстве запускаются лишь оболочки.
- Использование баз данных. Также для ускорения работы некоторых приложений используются специальные серверы в составе ЛВС для организации информации в виде упорядоченных блоков (например, MSSQL). Наряду с быстрым доступом, это обеспечивает дополнительную безопасность.
- Объединение в группы и использование политик безопасности. Эта функция возможна только благодаря ЛВС, она позволяет централизованно определять принадлежность пользователей к заданному сегменту, а также назначать им права доступа к общим ресурсам без внесения изменений в систему на клиентском ПК.
- Проксирование трафика. Обычно в любой ЛВС, которая имеет доступ к Интернету, установлен прокси-сервер (прозрачный или непрозрачный). Это необходимо, чтобы контролировать исходящие от пользователей соединения и отклонять пакеты данных, которые по какой-либо причине являются запрещенными.
Наиболее эффективные топологии
Топология построения компьютерных сетей под названием «снежинка» являет собой урезанный вариант «звезды». Здесь в качестве рабочих станций выступают концентраторы, соединенные между собой по типу «звезда». Этот вариант топологии считается одним из самых оптимальных для крупных локальных и глобальных сетей.
Как правило, в крупных локальных, а также в глобальных сетях имеется огромное количество подсетей, построенных на разных типах топологий. Такой вид называется смешанным. Здесь одновременно можно выделить и «звезду», и «шину», и «кольцо».
Итак, в вышеизложенной статье были рассмотрены все основные имеющиеся топологии компьютерных сетей, применяемые в локальных и глобальных сетях, их вариации, преимущества и недостатки.
Сравнение с другими типами
Решение в пользу конкретной базовой топологии при реализации ЛВС определяют достоинства и недостатки каждого решения.
При сравнении учитывают такие факторы:
https://youtube.com/watch?v=O_OoAejQ7-c
- Организацию связи между хостами – возможность работы в различных средах передачи, необходимость прокладки индивидуальных кабелей, использование стандартов связи и протоколов, производительность, скорость обмена.
- Масштабируемость сети – добавление новых рабочих станций, сегментов и подсетей.
- Длина коммуникационных линий.
- Наличие критических точек и связей.
- Устойчивость и надежность на физическом уровне – способность ЛВС функционировать при выходе из строя абонентского оборудования или разрыве связей.
- Устойчивость и надежность на логическом и информационном уровне – возможность устранения коллизий, отсеивания поврежденных пакетов, построения маршрутов в условиях отказа части оборудования и каналов, работы в критических условиях и пр.
Достоинства
Топология звезда выигрывает в сравнении с большинством других базовых.
По масштабируемости
- Для звезды вопрос добавления сегмента или подсети решается простым соединением центральных точек.
- В шине на физическом уровне требуется аналогичное действие – соединение двух точек, но на уровне передачи сигналов придется позаботиться о допустимой длине связей и пропускной способности общего канала.
- Для кольца потребуется полная реорганизация связей, обработки маркеров и пакетов данных.
- В ячеистой топологии задача еще сложнее – для добавляемой группы узлов необходимо обеспечить соединения и правила обмена, отвечающие условиям конкретной сети (например, количество альтернативных маршрутов).
По устойчивости и надежности при отказе клиентского оборудования или обрыве каналов
Сеть по топологии кольцо при отказе одного из узлов или обрыве связи гарантированно выходит из строя. В системах с общей шиной вероятность подобного исхода достаточно высока – незаглушенные терминаторами места обрыва или сбойные адаптеры на ПК становятся источниками коллизий, полностью парализующих обмен.
Звезда в этом случае сохраняет работоспособность – из обмена исключает только сбойный хост или узел, с которым нарушено физическое соединение.
По простоте администрирования
В общем случае и шинная, и кольцевая и ячеистая топологии рассматриваются как децентрализованные. Администрирование трафика требует настроек и мониторинга на каждом хосте или значительном числе узлов.
При использовании активной или истинной звезды эти задачи решаются на центральном узле. Однако пассивная звезда, особенно работающая через хаб, этого преимущества не имеет.
- По простоте организации сети, особенно кабельной, кольцо и шина существенно выигрывают, поскольку не требуют прокладки каналов от центрального хоста к каждому из периферийных. Уступает звезде в этом отношении только ячеистая структура, особенно, полносвязная.
- По затратам. Дополнительные кабельные каналы, усилители сигналов, и, главное, центральное оборудование существенно повышают цену организации звездообразной сети, в сравнении с шинной и кольцевой. При прочих равных по этому показателю звезде проигрывает только mesh-система.
- Наличие критической точки. Нарушение работоспособности центрального узла приведет к отказу всей сети.
Как передаются данные?
Чтобы организовать локальную сеть, мало лишь физически соединить машины, нужно еще выполнить настройку. Их работа контролируется программами. Чтобы компы понимали друг друга, используется единый и понятный для них язык — сетевой протокол.
Он бывает разных видов, но наибольшее распространение получили пакетные протоколы. Что это значит? Передаваемые данные разбиваются на блоки, которые помещаются в пакет. Он также содержит сведения о получателе и адресате. Каждый компьютер с определенной периодичностью коннектится к сети и проверяет проходящие пакеты: те, что предназначены для него, забирает.
Как железо понимает, что тот или иной пакет адресован именно ему? Каждая машина имеет IP-адрес, уникальный в рамках одной сети. Он задается в процессе настройки Windows или другой системы, которую вы используете.
Конец статьи:).
На моём блоге вам всегда рады.
ЛВС (локальная вычислительная сеть) — это система объединения различных телекоммуникационных устройств, расположенных как в непосредственной близости, так и удаленных. ЛВС может соединять в одну сеть несколько персональных компьютеров, серверов, принтеров, сканеров и т.д.
Связь устройств осуществляется при помощи различных средств доступа: медный кабель (витая пара), оптоволоконный кабель или беспроводной канал связи.
Иногда в рамках одной локальной сети создают рабочие группы, объединяющие несколько устройств под общим названием.
Наиболее часто ЛВС используется для создания единого информационного пространства в различных государственных и коммерческих организациях. За работу локальной сети или определенной ее части отвечают сетевые администраторы. Они обеспечивают стабильную работу сети, настраивают оборудование и программное обеспечение.
Функции ЛВС
1.Обеспечение доступа к системам электронного документооборота и Интернету.
2. Обеспечения общего доступа и совместного использования файлами и папками сети.
3. Хранение, резервирование и защита данных.
4. Обеспечение доступа нескольких компьютеров к офисной технике, например, к принтеру или сканеру.
5. Объединение в сеть устройств, находящихся друг от друга на значительном удалении. Например, ЛВС может объединять географически рассредоточенные филиалы одной компании.
Связь устройств в ЛВС
Компьютеры между собой могут объединяться либо при помощи системы кабелей, так и беспроводным способом. В первом случае устройства связаны при помощи медных или оптоволоконных проводников и технологии пакетной передачи данных Ethernet.
Если же проводником выступает беспроводной радиоканал, то используются такие технологии как GPRS, Wi-Fi, Bluetooth. Одна локальная сеть может соединяться с другой посредством шлюзов, а также иметь доступ к глобальной сети Интернет.
Самыми популярными технологиями построения локальных сетей на сегодняшний день являются Wi-Fi и Ethernet. Для построения ЛВС используют такие устройства, как беспроводные точки доступа, маршрутизаторы, сетевые адаптеры, коммутаторы, модемы и т.д.
Свойства ЛВС
Во-первых, локальная вычислительная сеть позволяет подключать дополнительное оборудование, не изменяя программных и технических параметров всех сети. Во-вторых, при выходе из строя одного компьтера вся сеть продолжает работать, и доступ к нужной информации все равно можно получить. Таким образом, из-за технических неполадок одного устройства работа всего офиса не «встанет». Кроме того, благодаря ЛВС можно разграничивать уровень доступа к сетевым ресурсам отдельных устройств.
Структуры ЛВС
Под структурой ЛВС подразумевается способ соединения элементов сети. Вот основные виды таких соединений.
1. «Шина».
Информация передается по единому линейному коммуникационному каналу. Данные доступны для всех рабочих станций сети.
2. «Звезда».
При помощи коаксиального кабеля все элементы сети подключаются к одному концентрирующему устройству (хабу). Информация от одной рабочей станции поступает в хаб, а оттуда она становится общедоступной для всех остальных компьютеров.
3. «Кольцо».
Компьтеры сети подключены друг к другу последовательно и замыкаются в кольцо. Информация проходит по кругу от первой рабочей станции к последней.
4. Древовидная структура
представляет собой комбинацию двух или сразу всех вышеуказанных способов связи.
ЛВС — технология, обеспечивающая удобный и быстрый обмен информацией между несколькими устройствами. При помощи локальных сетей можно хранить, резервировать и защищать данные. Поэтому ЛВС есть сейчас практически во всех офисах фирм, банков и промышленных предприятий.
С помощью них пользователи могут работать с одними и теми же ресурсами, программами, данными, не отходя от собственного рабочего места.
Логическая топология БЛВС
Порты коммутаторов уровня доступа, к которым подключаются точки доступа, помещаются в виртуальные сети точек доступа. Данные подсети предназначены для адресации интерфейсов управления точек доступа. На DHCP-сервер развёрнутом на базе MS Windows Server 2008 для сетей точек доступа создаются пулы адресов из подсетей, указанных в таблице VLAN (Таблица 5).
Помимо IP-адреса, маски подсети и IP-адреса шлюза через опцию DHCP точкам доступа передаются IP-адреса management-интерфейсов контроллеров беспроводной сети. Используя полученную информацию, точки доступа инициируют процесс подключения к контроллеру по протоколу CAPWAP, в ходе которого строят два шифрованных туннеля, один для управления, другой – для передачи данных беспроводных клиентов. После успешной регистрации точек на контроллере, контроллер производит обновление программного обеспечения точек и файлов настроек точек доступа, если в этом есть необходимость.
С целью управления контроллерами БЛВС на них настраивается виртуальный интерфейс управления (management interface) и виртуальный сервисный интерфейс (service interface) для взаимодействия с супервизором коммутатора ядра. Настройки коммутатора ядра для интеграции с контроллерами приведены в подразделе 2.15. Для каждой группы беспроводных пользователей создаются виртуальные интерфейсы dynamic, имеющие ассоциацию с виртуальными подсетями (VLAN) и идентификаторами беспроводных сетей (SSID). Далее для каждого идентификатора беспроводной сети создаются профили безопасности, параметры настроек которых определяются политиками безопасности для каждой группы беспроводных пользователей.
Аналогичная процедура настройки повторяется на втором контроллере.
Подключение беспроводных устройств к нужной БЛВС осуществляется по идентификатору SSID. В зависимости от выбранного SSID к беспроводному клиенту применяются политики безопасности и контроля доступа, соответствующие данной группе. После успешного прохождения аутентификации и авторизации пользователи каждой из групп помещаются в предназначенную для их группы виртуальную сеть (VLAN).
Описание групп беспроводных пользователей и соответствующих им профилей безопасности приведены в подразделе 2.9.
Описание процесса подключения беспроводных клиентов к БЛВС представлено в подразделе 2.12.
Маршрутизация между виртуальными подсетями БЛВС и другими сетями осуществляется на коммутаторе ядра ЛВС, для этого на коммутаторе ядра создаются соответствующие Interface VLAN. IP-адреса Interface VLAN коммутатора ядра выступают в роли шлюзов по умолчанию для своих подсетей. С целью изоляции трафика между разными сегментами БЛВС на Interface VLAN коммутатора ядра настраиваются списки доступа.
Перечень используемых в БЛВС виртуальных подсетей и идентификаторов беспроводных сетей приведен в подразделе 2.10.
IP-адресация устройств БЛВС представлена в подразделе 2.11.
Логическая топология БЛВС представлена в документе ИОС-СС-ИТ-БЛВС «Схема функциональной структуры».
Что такое топология сети?
Топология сети – это описание расположения узлов (например, коммутаторов и маршрутизаторов) и соединений в сети, часто представляемых в виде графика..
Независимо от того, насколько идентичны две организации, нет двух одинаковых сетей. Тем не менее, многие организации полагаются на устоявшиеся модели топологии сети. Топологии сети описывают, как устройства соединяются вместе и как данные передаются от одного узла к другому..
топология логической сети это концептуальное представление о том, как устройства работают на определенных уровнях абстракции. физическая топология подробно, как устройства физически связаны. Логические и физические топологии могут быть представлены как визуальные диаграммы.
карта топологии сети это карта, которая позволяет администратору видеть физическое расположение подключенных устройств. Наличие карты топологии сети под рукой очень полезно для понимания того, как устройства соединяются друг с другом, и лучших методов устранения неполадок..
Существует много различных типов топологий, которые корпоративные сети построили сегодня и в прошлом. Некоторые из топологий сети, которые мы собираемся рассмотреть, включают топология шины, кольцевая топология, звездная топология, топология сетки, и гибридная топология.
Топология Интернет
Начнем разбор топологии Интернет с «низшего» звена – компьютера пользователя.
Компьютер пользователя, через модем или напрямую, связывается с местным интернет — провайдером. Точка соединения компьютера пользователя с сервером провайдера, называют точкой присутствия или POP — Point of Presence.
В свою очередь, провайдер владеет своей местной сетью, состоящую из линий связи и маршрутизаторов. Пакеты данных получаемые провайдером передаются либо на хост провайдера, либо оператору сетевой магистрали.
В свою очередь, операторы магистралей владеют своими международными магистральными сетями (высокоскоростными). Эти сети связывают между собой местных провайдеров.
Хостинговые компании и крупные Интернет корпорации устраивают свои серверные фермы (дата центры), которые напрямую подключены к магистралям.
Эти центры обрабатывают десятки тысяч запросов к веб-страницам в секунду. Как правило, дата-центры устраиваются в арендуемых помещениях магистральных операторов, где и располагаются магистральные маршрутизаторы.
Все магистрали между собой связаны. Точки соединения называют точками входа в сеть или Network Access Point – NAP. Это допускает перекидывать передаваемый пакет информации с магистрали на магистраль.
Специально для WebOnTo.ru
Пример маршрутизации
В целом маршрутизация (или создание таблицы маршрутов) – это процесс, при котором сетевому интерфейсу указывается, через какой адрес получать доступ к удаленному сетевому ресурсу. Для лучшего понимания следует разобрать пример.
- Допустим, существуют две подсети, 192.168.0.0/24 и 10.0.0.0/8.
- Во второй подсети имеется файловый сервер с адресом 10.0.0.10, к которому нужно устроить доступ. В первой находится ПК с адресом 192.168.0.33 и сервер с двумя сетевыми интерфейсами (192.168.0.1 и 10.0.0.100), между которыми настроен NAT.
- Тогда для добавления маршрута в ОС Windows нужно запустить командную строку от имени Администратора и ввести команду «route ADD -p 10.0.0.10 MASK 255.0.0.0 192.168.0.1 METRIC 1».
- Нажать Enter. В «Пуск»-«Выполнить» или в адресной строке обычной папки ввести \\10.0.0.10 и нажать Enter. ПК получит доступ к ресурсам файлового хранилища.
Дополнительная информация. Таким образом, можно не только получать доступ к файлам и папкам, но и создать подключение через LAN к Интернету. Достаточно после прописывания маршрута в сетевых настройках, в качестве дополнительного шлюза указать адрес точки, имеющей общий выход в Глобальную сеть. Также можно добавлять маршруты для определённых сайтов так, что получится устроить некоторое подобие прокси-сервера.
Виды ЛВС
На сегодняшний день топология ЛВС делится на два типа — полносвязная и неполносвязная. К первой относятся такие соединения, в которых любое сетевое устройство имеет непосредственную связь с другими. Является редко применяемым, поскольку вызывает сомнения в эффективности. Кроме этого, она очень громоздкая, так как каждое устройство должно работать в паре с большим количеством портов для коммутации и контакта со всеми другими приборами.
Обратите внимание! Что касается неполносвязной, то в этом случае применяются специализированные узлы для обмена информацией между устройствами не прямо, а косвенно. Таких схем бывает несколько
Обратите внимание! Каждая схема соединения имеет свои положительные и негативные стороны
Их важно учесть при выборе топологии
«Шина»
Представляет собой наиболее дешевый и простой способ подключения. В таком случае применяется всего лишь одна линия в виде коаксиального кабеля. Именно он является источником и проводником в обмене информацией между пользователями. Особенностью этого класса является наличие на каждом конце «шины» терминатора, который убирает возможные искажения передачи.
Положительные качества:
- соединенные приборы имеют одинаковые права;
- неисправность одного устройства никоим образом не влияет на работу других;
- минимальное использование провода;
- простое и доступное масштабирование соединения при работе.
Негативные качества:
- невысокая надежность соединения из-за проблем с разъемами проводов;
- один канал делится на всех пользователей, что снижает производительность;
- проблемы с нахождением поломок в связи с параллельным включением адаптеров;
- возможность использования в сети небольшого количества приборов.
«Звезда»
Данный вид соединения характеризуется наличием сервера, к которому подключаются все сетевые устройства. Доступ к информации и обмен ею происходит только при помощи центрального сервера.
Обратите внимание! Представленная схема более сложная, чем «шина». Для нее характерно применение различного дополнительного оборудования
Минусы:
- при поломке или сбое в сервере соединение полностью или частично теряет работоспособность, то есть нормальное функционирование зависит только от одного компьютера;
- большой расход провода, что повышает затраты.
Плюсы:
- полное отсутствие сетевых конфликтов при схеме с управлением одним компьютером;
- неисправность одного из устройств или повреждение кабеля не влияет на работу;
- максимально упрощенное сетевое оборудование. Это связано с тем, что только один ПК является главным;
- один из наиболее безопасных методов подключения, обладает свойствами простого контроля за сетью и позволяет максимально ограничить доступ «лишних» участников.
«Кольцо»
Соединение происходит за счет контакта одного рабочего узла с другими двумя: один отвечает за прием информации, а по второму осуществляется передача. Получается схема, в которой все устройства соединены в одно кольцо специальными каналами, применяемые для передачи информации. Выход одного узла соединен со входом другого, то есть информация, переданная из одной точки, попадает на начало кольца.
Обратите внимание! Примечательно, что движение данных проходит всегда в одном направлении. Положительные черты:
Положительные черты:
- возможность быстрого создания и настройки подобного рода подключения;
- простое масштабирование. В отличие от «шины», необходимо отключение сети при создании дополнительного узла;
- практически неограниченное количество пользователей;
- минимизация конфликтов в сети и высокая устойчивость;
- при наличии ретрансляции можно увеличивать топологию почти без ограничений.
Негативные качества:
повреждение линии ограничивает работоспособность полной сети.
Ячеистая
Представленный тип является результатом удаления определенных связей из полносвязной топологии локальных сетей. В таком случае имеется возможность создания подключения с большим числом участников. В результате были созданы различные версии и конфигурации распространенных способов подключения, такие как: «решетка», двойное или тройное «кольцо», «дерево», «снежинка», сеть Клоза и др.
Обратите внимание! Представленными конфигурациями ячеистая структура не ограничена, возможны различные другие вариации сетевых соединений, многие из которых даже не имеют наименований
Смешанная
Такой тип получается в результате смешения нескольких схем соединений в одну. Она состоит из различных кластеров, которые в свою очередь могут быть стандартными топологиями.
ПО для картирования топологии сети
Теперь, когда мы знаем различные типы топологии, пришло время подумать о том, как спроектировать вашу сеть с нуля. Существует ряд программных продуктов, позволяющих создавать собственные диаграммы топологии сети. Диаграммы топологии сети показывают, как ваша сеть соединяется вместе, и помогают вам создать эффективный дизайн сети. Он также предоставляет вам контрольную точку, которая помогает вам при попытке выполнить поиск и устранение неисправностей для устранения неисправностей..
Существует множество различных продуктов для отображения топологии сети, но один из наиболее широко используемых Microsoft Visio. С помощью Microsoft Visio вы можете создать свою сеть, добавив сетевые элементы на холст. Эта программа позволяет вам разработать схему, которая детализирует вашу сеть. Конечно, создание собственной сети не всегда идеально, особенно когда вы пытаетесь отобразить большую сеть.
В результате вы можете рассмотреть возможность использования другого инструмента, такого как Картограф топологии сети SolarWinds который может автоматически обнаруживать устройства, подключенные к вашей сети. Автообнаружение пригодится, потому что это означает, что вам не нужно составлять структуру сети вручную.
Сетевая топология SolarWinds MapperDownload 14-дневная бесплатная пробная версия
Топологии компьютерных сетей
Топология сети – это усредненная геометрическая схема соединений в сети, порядок соединения объектов сети, ее конфигурация.
То есть топология сети означает физическое и логическое размещение сетевых компонентов.
Существуют следующие топологии компьютерных сетей:
- шинная топология;
- кольцевая топология (петля);
- топология «звезда» (радиальная, звездообразная);
- полносвязная (ячеистая, сетка);
- иерархическая (древовидная);
- смешанная (гибридная).
На практике все сети обычно строятся на основе трех базовых топологий: шина, кольцо, звезда.
Шина. В этой топологии все компьютеры сети подключены к одному кабелю, который называется магистралью.
Рис.1 Топология шина: С — сервер; К — компьютер.
Когда передаваемые по кабелю сигналы достигают его концов, они отражаются от них. Возникает наложение сигналов, находящихся в разных фазах, что приводит к их искажению. Поэтому сигналы, которые достигают концов кабеля, необходимо погасить. Для этой цели на концах кабеля устанавливают терминаторы.
В сети с топологией шина данные в виде электрических сигналов передаются всем компьютерам сети, но принимает их только тот компьютер, адрес которого совпадает с адресом получателя. Адрес получателя передается вместе с данными. В каждый момент времени передачу может вести только один компьютер, поэтому производительность такой сети зависит от количества компьютеров в ней. Чем больше компьютеров в сети, тем она медленнее.
Шина – это пассивная топология, т.е. компьютеры только слушают передаваемые по сети данные, но не перемещают их от отправителя к получателю. Поэтому выход одного или нескольких компьютеров из строя в такой сети никак не сказывается на работе сети.
Кольцо. В сетях с топологией «кольцо» компьютеры связаны один с другим, при этом первый компьютер связан с последним. Сигналы передаются по кольцу в одном направлении и проходят через каждый компьютер.
Рисунок 2 — Топология кольцо
Каждый компьютер распознает и получает тольку ту информацию, которая ему адресована.
В отличие от пассивной технологии «шина», в сетях с топологией «кольцо» каждый компьютер выступает в роли повторителя (репитера), т.е. компьютеры не только слушают, но и передают данные в сети от отправителя к получателю. Здесь каждый компьютер усиливает данные и передает их следующему компьютеру, пока эти данные не окажутся в том компьютере, чей адрес совпадает с адресом получателя. Получив данные, принимающий компьютер посылает передающему сообщение, в котором подтверждает факт приема. Выход из строя хотя бы одного компьютера приводит к неработоспособности сети.
Звезда. Топология «звезда» отличается тем, что все компьютеры подключаются к одному центральному (серверу). Для этого в центре сети содержится узел коммутации (коммутирующее устройство), к которому отдельным кабелем подключаются все компьютеры сети. Такой узел называется концентратором (hub).
Сигналы от передающего компьютера поступают через концентратор ко всем другим компьютерам.
Концентраторы делятся на активные и пассивные. Активные концентраторы передают сигналы так же, как репитеры (повторители), поэтому их называют многопортовыми повторителями. Обычно они имеют от 8 до 12 портов для подключения компьютеров. Активные концентраторы питаются от электрической сети.
К пассивным концентраторам относятся монтажные или коммутирующие панели, которые просто пропускают через себя сигнал, не усиливая и не восстанавливая его. Пассивным концентраторам не требуется питание от электрической сети.
Основное преимущество топологии «звезда» – высокая надежность. Выход из строя одного или нескольких компьютеров не приводит к потере работоспособности остальной части сети. Обрыв кабеля в одном месте приводит к отключению от сети только одного компьютера. Только неисправность концентратора приводит к полной потере работоспособности сети. Недостатком этой топологии является необходимость в дополнительном расходе кабеля и установке концентратора.
Кроме базовых топологий используют также другие схемы соединений компьютеров в сети, например ячеистую топологию, иерархическое соединение, а также комбинации базовых топологий, например звезда-шина или звезда-кольцо.
Ячеистая топология. В некоторых случаях используется ячеистая топология. В данной топологии каждый компьютер соединен с каждым другим компьютером отдельным кабелем.
Сеть с ячеистой топологией обладает высокой избыточностью и надежностью. Данные от одного компьютера к другому могут передаваться по разным маршрутам, поэтому разрыв кабеля не отражается на работоспособности сети. Главный недостаток сетей с ячеистой топологией – большой расход кабеля.
Главная страница >>