Масштабируемость Ethernet
Оказывается, Ethernet и другие технологии канального уровня не подходят для создания крупной сети, которая может охватить весь мир из-за того, что у них есть существенные ограничения по масштабируемости.
Давайте рассмотрим существующие ограничения. Коммутаторы изернет для передачи кадра пользуются таблицами коммутации. И эта таблица должна содержать все MAК-адреса компьютеров в сети. Если для локальной сети это можно сделать, то для глобальной сети, в которой несколько миллиардов устройств, никакому коммутатору не хватит памяти, чтобы хранить подобную таблицу. И искать нужный порт в такой огромной таблице будут очень долго.
Следующая проблема в том, что если коммутатор не понимает куда отправлять кадр, он передает его на все порты, надеясь, что где-то там находиться получатель. Такой подход тоже работает в локальных сетях, но в глобальных сетях не работает. Если в интернет мы не знаем куда отправить пакет и будем пересылать всем компьютерам в интернете, то через некоторое время, мы засорим сеть такими мусорными пакетами и это приведет к отказу в обслуживании.
Другая проблема это отсутствие дублирующих путей между коммутаторами. В Ethernet у нас всегда должно быть одно соединение, чтобы не образовалось кольца, иначе сеть будет перегружена широковещательным штормом. В Ethernet есть технология STP, которая позволяет создавать несколько связей между коммутаторами, но в каждый момент времени активно всего одно соединение.
Рассмотрим пример, в нашей сети есть несколько коммутаторов. Они соединены между собой и есть такое соединение, которое приводит к образованию кольца.
В сети запускается протокол STP, коммутаторы выбирают корневой. Рассчитывают расстояние до корневого и отключают одно из соединений.
Если коммутаторы используются для построения локальной сети, где расстояние между коммутаторами небольшое, то такой подход работает отлично. Но, предположим, что мы строим глобальную сеть и если мы хотим отправить данные из Екб в Челябинск, который является соседним городом и расположен близко, то на уровне Ethernet мы это сделать не сможем, потому что прямое соединение отключено протоколом STP.
Необходимо передавать данные через другие города, расстояние гораздо больше, поэтому скорость передачи будет существенно ниже. От этого хотелось бы избавиться.
Масштабируемость на сетевом уровне
Что делает сетевой уровень, чтобы обеспечить масштабирование и построить такую сеть, которая способна объединить все компьютеры во всем мире, например сеть интернет.
- Первое это агрегация адресов. Сетевой уровень работает не с отдельными адресами, а с группами адресов, которые объединяются и такие блоки адресов называются сетью.
- Пакеты, для которых путь доставки неизвестен на сетевом уровне отбрасываются. Это обеспечивает защиту составной сети от циркуляции мусорных пакетов.
- И возможность наличия нескольких активных путей в сети. Это является одной из причин создания сетей с пакетной коммутацией. В нашей сети всегда есть некое количество активных путей между отправителем и получателем. И данные могут пройти по любому из этих путей. В том числе, если один путь выйдет из строя, то другой путь останется доступным. Но если у нас есть несколько путей, то на сетевом уровне появляется задача маршрутизации. То есть, на каждом этапе мы должны определять, по какому пути мы отправим ту или иную порцию данных.
Уровни эталонной модели
Уровни эталонной модели OSI представляют из себя вертикальную структуру, где все сетевые функции разделены между семью уровнями. Следует особо отметить, что каждому такому уровню соответствует строго описанные операции, оборудование и протоколы.
Взаимодействие между уровнями организовано следующим образом:
- по вертикали — внутри отдельно взятой ЭВМ и только с соседними уровнями.
- по горизонтали — организовано логическое взаимодействие — с таким же уровнем другого компьютера на другом конце канала связи (то есть сетевой уровень на одном компьютере взаимодействует с сетевым уровнем на другом компьютере).
Так как семиуровневая модель osi состоит из строгой соподчиненной структуры, то любой более высокий уровень использует функции нижележащего уровня, причем распознает в каком именно виде и каким способом (т.е. через какой интерфейс) нужно передавать ему поток данных.
Рассмотрим, как организуется передача сообщений по вычислительной сети в соответствии с моделью OSI. Прикладной уровень — это уровень приложений, то есть данный уровень отображается у пользователя в виде используемой операционной системы и программ, с помощью которой выполняется отправка данных. В самом начале именно прикладной уровень формирует сообщение, далее оно передается представительному уровню, то есть спускается вниз по модели OSI. Представительный уровень, в свою очередь, проводит анализ заголовка прикладного уровня, выполняет требуемые действия, и добавляет в начало сообщения свою служебную информацию, в виде заголовка представительного уровня, для представительного уровня узла назначения. Далее движение сообщения продолжается вниз, спускается к сеансовому уровню, и он, в свою очередь, также добавляет свои служебные данные, в виде заголовка вначале сообщения и процесс продолжается, пока не достигнет физического уровня.
Следует отметить, что помимо добавления служебной информации в виде заголовка вначале сообщения, уровни могут добавлять служебную информацию и в конце сообщения, который называется «трейлер».
Когда сообщение достигло физического уровня, сообщение уже полностью сформировано для передачи по каналу связи к узлу назначения, то есть содержит в себе всю служебную информацию добавленную на уровнях модели OSI.
Помимо термина «данные» (data), которое используется в модели OSI на прикладном, представительном и сеансовом уровнях, используются и другие термины на других уровнях модели OSI, чтобы можно было сразу определить на каком уровне модели OSI выполняется обработка.
В стандартах ISO для обозначения той или иной порции данных, с которыми работают протоколы разных уровней модели OSI, используется общее название — протокольный блок данных (Protocol Data Unit, PDU). Для обозначения блоков данных определенных уровней часто используются специальные названия: кадр (frame), пакет (packet), сегмент (segment).
Расширения модели OSI
Два нижних уровня модели OSI, Физический и Канальный, устанавливают, каким образом несколько компьютеров могут одновременно использовать сеть, чтобы при этом не мешать друг другу.
IEEE Project 802 относился именно к этим двум уровням и привел к созданию спецификаций, определивших доминирующие среды ЛВС.
IEEE, подробно описывая Канальный уровень, разделил его на два подуровня:
- Управление логической связью (Logical Link Control, LLC) — контроль ошибок и управление потоком данных;
- Управление доступом к среде (Media Access Control, MAC).
- Прикладной уровень
- Представительский уровень
- Сеансовый уровень
- Транспортный уровень
- Сетевой уровень
- Канальный уровень
- Управление логической связью (LLC)
- Управление доступом к среде (MAC)
- Физический уровень
Управление логической связью
Подуровень Управление логической связью устанавливает канал связи и определяет использование логических точек интерфейса, называемых точками доступа к услугам (service access points, SAP). Другие компьютеры, ссылаясь на точки доступа к услугам, могут передавать информацию с подуровня Управления логической связью на верхние уровни OSI. Эти стандарты определены в категории 802.2.
Управление доступом к среде
Как показано ниже, подуровень Управление доступом к среде — нижний из двух подуровней. Он обеспечивает совместный доступ плат сетевого адаптера к Физическому уровню . Подуровень Управление доступом к среде напрямую связан с платой сетевого адаптера и отвечает за безошибочную передачу данных между двумя компьютерами сети.
Категории 802.3, 802.4, 802.5 и 802.12 определяют стандарты как для этого подуровня, так и для первого уровня модели OSI, Физического .
Эталонная модель OSI
Начальная стадия развития сетей LAN, MAN и WAN имела во многих отношениях хаотический характер. В начале 80-х годов XX века резко увеличились размеры сетей и их количество. По мере того как компании осознавали, что, используя сетевые технологии, они могут сэкономить значительные средства и повысить эффективность своей работы, они создавали новые сети и расширяли уже существовавшие с той же быстротой, с какой появлялись новые сетевые технологии и новое оборудование.
Однако к середине 80-х годов эти же компании стали испытывать трудности с расширением уже существующих сетей. Сетям, использовавшим различные спецификации и реализованным различными способами, стало все труднее осуществлять связь друг с другом. Компании, оказавшиеся в такой ситуации, первыми осознали, что необходимо отходить от использования фирменных (proprietary) сетевых систем.
Для решения проблемы несовместимости сетей и их неспособности осуществлять связь друг с другом международная организация по стандартизации (International Organization for Standardization — ISO) разработала различные сетевые схемы, такие, как DECnet, системная сетевая архитектура (Systems Network Architecture — SNA) и стек протоколов TCP/IP. Целью создания таких схем была разработка некоторого общего для всех пользователей набора правил работы сетей. В результате этих исследований организация ISO разработала сетевую модель, которая смогла помочь производителям оборудования создавать сети, совместимые друг с другом и успешно взаимодействовавшие. Процесс подразделения сложной задачи сетевой коммуникации на отдельные более мелкие можно сравнить с процессом сборки автомобиля.
Процесс проектирования, изготовления деталей и сборки автомобиля, если его рассматривать как единое целое, является весьма сложным. Маловероятно, что нашелся бы специалист, который смог бы решить все требуемые задачи при сборке автомобиля: собрать машину из случайным образом подобранных деталей или, скажем,
при изготовлении конечного продукта непосредственно из железной руды. По этой причине проектированием автомобиля занимаются инженеры»проектировщики, инженеры-литейщики проектируют формы для литья деталей, а сборочные инженеры и техники занимаются сборкой узлов и автомобиля из готовых деталей.
Эталонная модель OSI (OSI reference model), обнародованная в 1984 году, была описательной схемой, созданной организацией ISO. Эта эталонная модель предоставила производителям оборудования набор стандартов, которые обеспечили большую совместимость и более эффективное взаимодействие различных сетевых технологий и оборудования, производимого многочисленными компаниями во всем мире.
Эталонная модель OSI является первичной моделью, используемой в качестве
основы для сетевых коммуникаций.
Хотя существуют и другие модели, большинство производителей оборудования и программного обеспечения ориентируются на эталонную модель OSI, особенно когда желают обучить пользователей работе с их продуктами. Эталонная модель OSI в настоящее время считается наилучшим доступным средством обучения пользователей принципам работы сетей и механизмам отправки и получения данных по сети.
Эталонная модель OSI определяет сетевые функции, выполняемые каждым ее уровнем
Что еще более важно, она является базой для понимания того, как информация передается по сети. Кроме того, модель OSI описывает, каким образом информация или пакеты данных перемещается от программ»приложений (таких, как электронные таблицы или текстовые процессоры) по сетевой передающей среде (такой, как провода) к другим программам»приложениям, работающим на другом компьютере этой сети, даже если отправитель и получатель используют разные виды передающих сред
Как обрабатываются данные во время передачи?
В многоуровневой системе, устройства уровня обмениваются данными в другом формате, который известен как protocol data unit (PDU). В таблице ниже показаны PDU на разных уровнях.
Таблица: protocol data unit (PDU), обрабатываемый на разных уровнях.
Например, когда пользователь запрашивает просмотр веб-сайта на компьютере, программное обеспечение удаленного сервера сначала передает запрошенные данные на прикладной уровень, где они обрабатываются от уровня к уровню, при этом каждый уровень выполняет свои назначенные функции. Затем данные передаются по физическому уровню сети до тех пор, пока их не получит конечный сервер или другое устройство. На этом этапе данные снова передаются вверх по уровням, каждый уровень выполняет назначенные ему операции, пока данные не будут использованы принимающим программным обеспечением.
Рисунок 3: потоки данных от верхних уровней к нижним, каждый уровень добавляет верхний/нижний колонтитул к PDU.
Во время передачи каждый слой добавляет верхний или нижний колонтитул или оба к PDU, поступающему с верхнего уровня, который направляет и идентифицирует пакет. Этот процесс называется инкапсуляцией. Верхний (и Нижний колонтитулы) и данные вместе образуют PDU для следующего уровня. Процесс продолжается до достижения самого низкого уровня (физического уровня или уровня доступа к сети), с которого данные передаются на принимающее устройство. В приемном устройстве происходит обратный процесс, де-инкапсуляции данных на каждом уровне. верхние и нижние колонтитулы направляют операции. Затем приложение, наконец, использует данные. Процесс продолжается до тех пор, пока все данные не будут переданы и получены.
# В следующих частях / To be continued…
- Первые шаги в OMNeT++ и INET
- Алгоритм определения топологии сети по собранной статистике
- OMNeT++ продолжение
- Математика
- OMNeT++ продолжение 2
- Реализация
- Эксперимент (название‑спойлер: “”)
Эта часть: в GitHub Pages;
P.S
на картинках метки стоят неспроста (; обрати внимание на хеш в URI картинок ). P.P.S
в изображениях могут быть спрятаны пасхалки, придающие им глубокий смысл ;)
P.P.S. в изображениях могут быть спрятаны пасхалки, придающие им глубокий смысл ;)
P.P.P.S. В свете скрыл ссылки на внешний ресурс, где я раньше постил статьи под спойлеры, во всех местах кроме одного – там где указывается на конкретный раздел статьи. Если такие ссылки (на статьи) разрешены, то напишите в , уберу из под спойлера – станет удобнее читателям :)
Методы выделения кадров
Чтобы определить, где в потоке бит начинаются и заканчиваются отдельные frame, были придуманы следующие методы:
- Указание количества байт;
- Вставка байтов (byte stuffing) и битов (bit stuffing);
- Средства физического уровня.
Указатель количества байт
Наипростейший способ определить, где начинается и заканчивается кадр — добавлять длину этого кадра в начало кадра. Например, на картинке ниже показано 3 кадра выделенных разным цветом. В начале каждого кадра указано количество байт. Синим цветом — 6, желтым — 8, зеленым — 4.
Этот метод прост в реализации, но есть недостаток, искажение данных при передаче по сети. Например, при передаче первого кадра появилось искажение и вместо длины кадра шесть байт, получатель получил семь байт.
Получатель посчитает, что семь это длина кадра. Далее идет длина следующего кадра. Здесь она два байта, затем длина следующего кадра семь. Если у нас произошла хоть одна ошибка, то будет нарушена последовательность чтений. Следовательно такой метод на практике не годится к применению.
Вставка byte и bit
Чтобы определить начало и конец кадра, в начале и конце каждого кадра используют специальные последовательности байт или бит. Вставка байтов применялась в протоколах BSC компании IBM, в котором отправлялись обычные текстовые символы.
Перед передачей каждого фрейма добавлялись байты DLE STX (start of text), а после окончания передачи фрейма DLE ETX (end of text). Проблема может возникнуть в том, что в данных тоже может встретиться точно такая же последовательность.
Чтобы отличать последовательность, которая встречается в данных от управляющих символов используются Escape последовательности. В протоколе BSC это тоже последовательность символов DLE (data link escape). Если какая-то последовательность управляющих символов встречается в данных перед ними добавляются escape последовательности DLE, чтобы протокол понимал, что в реальности это данные, а не управляющие символы.
Вставка битов применяется в более современных протоколах, таких как HDLC и PPP. Здесь перед началом и концом каждого кадра добавляется последовательность бит состоящая из 01111110. Может возникнуть проблема, если в данных встречаются подряд идущие 6 или более единиц. Чтобы решить эту задачу в данные, после каждых пяти последовательно идущих 1 добавляется 0. Затем, как получатель прочитал 5 последовательно идущих 1 и встретил 0, то он, этот 0 игнорирует.
Средства физического уровня
Другой вид определения начала и конца кадра, это использование средств физического уровня и он применяется в технологии Ethernet. В первом варианте технологии ethernet использовалась преамбула — это последовательность данных, которая передается перед началом каждого кадра. Она состоит из 8 байт. Первые семь байт состоят из чередующихся 0 и 1: 10101010. Последний байт содержит чередующиеся 0 и 1, кроме двух последних бит в котором две единицы. И именно такая последовательность говорит, что начинается новый кадр.
В более старых версиях используется избыточное кодирование, позволяющее определить ошибки, но при этом не все символы являются значащими. В технологии Fast Ethernet применили эту особенность кода и используют символы, которые не применяются для представления данных в качестве сигналов о начале и конце кадра.
Перед отправкой каждого кадра передаются символы J (11000) и K (10001), а после окончания отправки кадра передается символ T (01101).
Некоторые протоколы
- 7 Прикладной уровень
- BGP • BitTorrent • CANopen • CLNP • DHCP • DNS • FTP • FTPS • FXP • Gopher • HTTP • HTTPS • IMAP • IPFS • IPP • IRC • IS-IS • LDAP • LMTP • Modbus • NFS • NNTP • NTP • POP3 • RDP • RELP • RFB • RPC • RTP • RTSP • SFTP • SILC • SIMPLE • SIP • SMB • SMTP • SNMP • SOAP • SSH • STOMP • TACACS • TACACS + • TCAP • Telnet • TFTP • VoIP • WebDAV • XCAP • XMPP • µTP • Интернет • WebSocket
- 6 Уровень представления
- AFP • ASCII • ASN.1 • HTML • NCP • SSP • TDI • TLS • Unicode • UUCP • Videotex • XDR • XML • JSON • MQTT
- 5 Сессионный уровень
- AppleTalk • NetBios • RPC
- 4 Транспортный уровень
- DCCP • SCTP • SPX • TCP • UDP
- 3 Сетевой уровень
- ARP • DHCP (как услуга) • EIGRP • ICMP • IGMP • IP • Ipv4 • Ipv6 • IPX • NetBEUI • RIP • OSPF • WDS
- 2 Уровень канала передачи данных
- Token Ring • ATM • BitNet • CAN • Ethernet • FDDI • Frame Relay • HDLC • LocalTalk • MPLS «2,5» • PPP • PPPoE • SPB • X.21 • X.25
- 1 Физический уровень
- 1000BASE-T • 100BASE-TX • 10BASE-T • 10BASE2 • 10BASE5 • ADSL • Bluetooth • Коаксиальный кабель • Манчестерское кодирование • Кодирование с задержкой • Кодирование NRZ • CSMA / CA • CSMA / CD • DSSS • EIA-422 • EIA-485 • FHSS • HomeRF • IEEE 1394 (FireWire) • IrDA • Витая пара • PDH • ISDN • RS-232 • RS-449 • SDH • SDSL • SONET • T-carrier • Thunderbolt • USB • V.21 — V.23 • V .42 — V.90 • VDSL • VDSL2 • Wi-Fi • Беспроводной USB
Межуровневые функции
Межуровневые функции — это сервисы, которые не привязаны к данному уровню, но могут влиять на более чем один уровень. Некоторые ортогональные аспекты, такие как управление и безопасность , охватывают все уровни (см. Рекомендацию ITU-T X.800). Эти услуги направлены на улучшение триады ЦРУ — конфиденциальность , целостность и доступность — передаваемых данных. На практике межуровневые функции являются нормой, поскольку доступность услуги связи определяется взаимодействием между сетевым дизайном и протоколами управления сетью .
Конкретные примеры межуровневых функций включают следующее:
Служба безопасности (электросвязь), как определено в рекомендации ITU-T X.800.
Функции управления, т. Е. Функции, которые позволяют настраивать, создавать экземпляры, отслеживать, завершать обмен данными между двумя или более объектами: существует специальный протокол уровня приложений, общий протокол информации управления (CMIP) и соответствующая ему служба, служба общей информации управления (CMIS ), они должны взаимодействовать с каждым слоем, чтобы иметь дело со своими экземплярами.
Многопротокольная коммутация по меткам (MPLS), ATM и X.25 — это протоколы 3a. OSI подразделяет сетевой уровень на три подуровня: 3a) доступ к подсети, 3b) зависимая от подсети конвергенция и 3c) независимая от подсети конвергенция. Он был разработан для предоставления унифицированной службы передачи данных как для клиентов с коммутацией каналов, так и для клиентов с коммутацией пакетов, которые обеспечивают модель обслуживания на основе дейтаграмм . Его можно использовать для передачи множества различных видов трафика, включая IP-пакеты, а также собственные кадры ATM, SONET и Ethernet
Иногда можно увидеть ссылку на слой 2.5.
Перекрестное планирование MAC и PHY важно в беспроводных сетях из-за изменяющегося во времени характера беспроводных каналов. Путем планирования передачи пакетов только в благоприятных условиях канала, что требует, чтобы MAC-уровень получал информацию о состоянии канала с PHY-уровня, пропускная способность сети может быть значительно улучшена, и можно избежать потерь энергии.
От слова к делу! Сравним разные коммутаторы на примере
Для наглядности выберем три модели примерно одного уровня. Понятно, что коммутаторы L2, L2+ и L3 здорово отличаются по функциям. Поэтому приходится использовать общие признаки. Например, сравнивать коммутаторы на 5 и 50 портов (включая Uplink) будет некорректно.
В итоге мы выбрали три коммутатора:
- L3 — XGS4600-32;
- L2+ — XGS2210-28;
- L2 — GS2220-28.
Обратите внимание, что внешне устройств довольно похожи, чего не скажешь об их возможностях и предполагаемых ролях. Для наглядности ниже приводим небольшой фрагмент сравнительной таблицы функций
А функций у этих моделей коммутаторов очень много. Чтобы не пытаться объять необъятное, мы выбрали наиболее очевидные функциональные области: управление трафиком, безопасность и маршрутизация. Другие группы опций тоже отличаются, но не так очевидно.
Zyxel XGS4600-32 — коммутатор Layer 3
- Имеет 24 гигабитных порта под витую пару, 4 порта Combo (SFP/RJ‑45) и четыре интегрированных 10-Gigabit SFP+
- Поддерживает объединение в физический стек с использованием одного или двух слотов 10-Gigabit SFP+.
- Поддерживает и статическую, и динамическую маршрутизацию.
- Имеет два отдельных разъёма подключения питания.
Рисунок 2. Коммутатор Zyxel XGS4600-32 — коммутатор Layer 3.
Zyxel XGS2210 — коммутатор Layer 2+
Одно из предназначений — создание сети для передачи трафика VoIP, видеоконференций, IPTV и IP-камер видеонаблюдения наблюдения и управление трафиком современных конвергентных приложений.
Поддерживает объединение в физический стек с помощью двух портов 10-Gigabit SFP+.
Поддерживает PoE (стандарты IEEE 802.3af PoE и 802.3at PoE Plus) до 30Ватт на порт для питания устройств с большей потребляемой мощностью, например, это могут быть точки доступа 802.11ac и IP-видеотелефоны.
В данной модели присутствуют дополнительные средства поддержки безопасности, например, IP source guard, DHCP snooping и ARP inspection, механизмы фильтрации L2, L3 и L4, функцию MAC freeze, изоляцию портов и создание гостевой VLAN.
Добавлены элементы статической маршрутизации IPv4/v6 и назначение DHCP relay с конкретным IP интерфейсом отправителя.
Рисунок 3. Zyxel XGS2210 — коммутатор Layer 2+
Zyxel GS2220 — коммутатор Layer 2
Интересно, что серия GS2220 — это гибридные коммутаторы с доступными вариантами управления: через облако Zyxel Nebula, через локальное подключение, плюс поддержка SNMP.
Из интересных функций можно выделить L2 multicast, IGMP snooping, Multicast VLAN Registration (MVR).
Данная модель неплохо подходит и для обеспечения сетевой среды VoIP, видеоконференций и IPTV.
Рисунок 4. Zyxel GS2220 — коммутатор Layer 2.
Это интересно
Компания Zyxel Networks сообщила о поддержке своих коммутаторов в специализированном режиме Networked AV (созданного совместно с компанией ATEN), позволяющего облегчить внедрение AV-систем на базе коммутаторов и повысить эффективность их использования.
Стоит отметить специальную программу — мастер настройки. Она специально разработана для удобного управления функциями, которые часто используются при настройке сетей потоковой передачи аудио/видео.
Также появилась новая консоль Networked AV dashboard для контроля основных параметров: данные о портах, расход электроэнергии, и другая информация, благодаря которой можно сразу проверить текущее состояние сети и настроить коммутатор.
Для гигабитных управляемых коммутаторов второго уровня серии GS2220 режим Networked AV доступен с сентября 2020 года (нужно обновить микропрограмму до версии v4.70 или более поздней). Для коммутаторов серии XGS2210 доступ ожидается до конца 2020 года.
Таблица 2. Сравнение коммутаторов XGS4600-32 (L3), XGS2210-28 (L2+) и GS2220-28 (L2).
* Функции, доступные также в облачном режиме управления.
Для начала опровергнем основные мифы
Коммутатор L3 имеет большую пропускную способность чем L2?
Такой взаимосвязи нет. Всё зависит от аппаратного и программного обеспечения (firmware), размещённых портов (интерфейсов), поддержки соответствующих стандартов.
Разумеется, связь с использованием коммутатора уровня L3 через сетевой интерфейс 1Gb/s будет медленнее, чем с использованием коммутатора L2 через 10 Gb/s.
Возможно, этот миф связан с тем, что коммутаторы L3 поддерживают больше функций, что находит отражение в аппаратном обеспечении: быстрее процессор, больше памяти, нежели чем у коммутаторов L2 того же поколения. Но, во-первых, иногда коммутаторы L2 тоже выпускаются на базе мощных контроллеров, позволяющих быстро обрабатывать служебные данные и пересылать кадры Ethernet, во-вторых, даже усиленному «железу» коммутатора L3 есть чем заняться: управлять VLAN, анализировать ACL на основе IP и так далее. Поэтому если судить по загрузке, однозначно ответить на вопрос: «Какой коммутатор «мощнее»?» — не получится.
Коммутаторы L3 — более современные, а L2 — уже вчерашний день?
Это вовсе не так. На сегодняшний день выпускаются как коммутаторы L2, так и коммутаторы L3. Коммутаторов уровня L2 выпускается достаточно много, потому что работать им приходится чаще всего на уровне доступа (пользователей), где и портов, и коммутаторов требуется значительно больше.
Транспортный уровень
Транспортный уровень, также известный как транспортный уровень хост-хост, отвечает за предоставление прикладного уровня сервисами связи сеанса и датаграмм. Основными протоколами этого уровня являются TCP и UDP. Протокол TCP обеспечивает один-на-один, ориентированную на соединение, надежную службу связи. Он отвечает за последовательность и подтверждение отправленных пакетов, а также восстановление пакетов, потерянных при передаче. UDP предоставляет один-к-одному или один-ко-многим, без подключения, ненадежную службу связи. UDP обычно используется, когда объем передаваемых данных невелик (например, данные помещаются в один пакет).
Набор протоколов в OSI:
Пора рассказать на мой взгляд самое интересное, это распределение протоколов по уровням модели OSI, тут будут описаны самые основные протоколы, так как, их очень много.
1. Протоколы физического уровня модели OSI:
- Ethernet — Протокол для работы кабеля Ethernet, или кабеля для интернета;
- GSM — Протокол для работы со сотовой связи;
- 802.11 — Протокол для работы Wi-Fi;
- USB — Протокол для работы шины в компьютере или флешки;
- IrDA — Протокол для работы с инфракрасным портом;
- Bluetooth — Протокол для работы с Bluetooth;
2. Протоколы канального уровня модели OSI:
- Ethernet — Протокол самого кабеля интернет;
- Frame Relay — Протокол для передачи сотовой связи;
- PPP — Протокол передачи данных один на один, между двумя компьютерами;
3. Протоколы сетевого уровня модели OSI:
- IPv4 — Протокол для работы IP адресов версии четыре;
- IPv6 — Протокол для работы IP адресов версии шесть;
- ICMP — Протокол для ошибок в сотовой связи;
- RiP — Протокол позволяет маршрутизаторам быстро и динамически находить путь;
4. Протоколы транспортного уровня модели OSI:
- TCP — Протокол который отправляет пакет проверяя, но медленно, используется для сайтов;
- UDP — Протокол который отправляет пакет не проверяя, но быстро, используется в онлайн играх;
5. Протоколы сеансового уровня модели OSI:
- PPTP — Протокол для туннельного соединена с компьютер на компьютер или VPN;
- L2TP — Подобный протокол PPTP
- SSH — Протокол позволяет производить удалённое управление операционной системой;
6. Протоколы представления уровня модели OSI:
- SSL — Криптографический протокол для безопасного соединения;
- XDR — Протокол позволяет организовать не зависящую от платформы передачу данных между компьютерами в гетерогенных сетях;
7. Протоколы прикладного уровня модели OSI:
- HTTP — Протокол для передачи гипертекста или HTML;
- FTP, TFTP, SFTP — Протоколы для передачи файлов;
- TELNET — Протокол для уделённого управления другим компьютером;
- DHCP — Протокол для автоматического получение IP адреса;
- IRC — Протокол для обмена сообщениями в режиме реального времени;
- SNMP — Протокол для управление устройствам в IP-ситах;
- DNS — Протокол позволяющий получать информацию о доменах;
- BitTorrent — Пиринговый (P2P) сетевой протокол для кооперативного обмена файлами через Интернет;
- SMTP, POP3, IMAP4— Протоколы для отправки, доставки электронной почты;
Уровни OSI
Для наглядности процесс работы сети принято разделять на 7 уровней, на каждом из которых работает своя группа протоколов.
Для выполнения разных задач имеется несколько протоколов, которые занимаются обслуживанием систем, например, стек TCP/IP. Давайте здесь внимательно посмотрим на то, каким образом информация с одного компьютера отправляется по локальной сети на другой комп.
Задачи компьютера ОТПРАВИТЕЛЯ:
- Взять данные из приложения
- Разбить их на мелкие пакеты, если большой объем
- Подготовить к передаче, то есть указать маршрут следования, зашифровать и перекодировать в сетевой формат.
Задачи компьютера ПОЛУЧАТЕЛЯ:
- Принять пакеты данных
- Удалить из него служебную информацию
- Скопировать данные в буфер
- После полного приема всех пакетов сформаровать из них исходный блок данных
- Отдать его приложению
Для того, чтобы верно произвести все эти операции и нужен единый свод правил, то есть эталонная модель OSI.
Вернемся у к уровням OSI. Их принято отсчитывать в обратном порядке и в верхней части таблицы располагаются сетевые приложения, а в нижней — физическая среда передачи информации. По мере того, как данные от компьютера спускаются вниз непосредственно к сетевому кабелю, протоколы, работающие на разных уровнях, постепенно их преобразовывают, подготавливая к физической передаче.
Разберем их подробнее.
6. Уровень представления (Presentation Layer)
Переводит эти данные на единый универсальный язык. Дело в том, что каждый компьютерный процессор имеет собственный формат обработки данных, но в сеть они должны попасть в 1 универсальном формате — именно этим и занимается уровень представления.
Ваше мнение — WiFi вреден?
Да
22.96%
Нет
77.04%
Проголосовало: 30958
5. Сеансовый уровень (Session Layer)
У него много задач.
- Установить сеанс связи с получателем. ПО предупреждает компьютер-получатель о том, что сейчас ему будут отправлены данные.
- Здесь же происходит распознавание имен и защита:
- идентификация — распознавание имен
- аутентификация — проверка по паролю
- регистрация — присвоение полномочий
- Реализация того, какая из сторон осуществляет передачу информации и как долго это будет происходить.
- Расстановка контрольных точек в общем потоке данных для того, чтобы в случае потери какой-то части легко было установить, какая именно часть потеряна и следует отправить повторно.
- Сегментация — разбивка большого блока на маленькие пакеты.
4. Транспортный уровень (Transport Layer)
Обеспечивает приложениям необходимую степень защиты при доставке сообщений. Имеется две группы протоколов:
- Протоколы, которые ориентированы на соединение — они отслеживают доставку данных и при необходимости запрашивают повторную отправку при неудаче. Это TCP — протокол контроля передачи информации.
- Не ориентированные на соединение (UDP) — они просто отправляют блоки и дальше не следят за их доставкой.
3. Сетевой уровень (Network Layer)
Обеспечивает сквозную передачу пакета, рассчитывая его маршрут. На этом уровне в пакетах ко всей предыдущей динформации, сформированной другими уровнями, добавляются IP адреса отправителя и получателя. Именно с этого момент пакет данных называется собственно ПАКЕТОМ, у которого есть IP адреса (IP протокол — это протокол межсетевого взаимодействия).
2. Канальный уровень (Data Link Layer)
Здесь происходит передача пакета в пределах одного кабеля, то есть одной локальной сети. Он работает только до пограничного маршрутизатора одной локальной сети. К полученному пакету канальный уровень добавляет свой заголовок — MAC адреса отправителя и получателя и в таком виде блок данных уже называется КАДРОМ.
При передачи за пределы одной локальной сети пакету присваивается MAC не хоста (компьютера), а маршрутизатора другой сети. Отсюда как раз появляется вопрос серых и белых IP, о которых шла речб в статье, на которую была выше дана ссылка. Серый — это адрес внутри одной локальной сети, который не используетс яза ее пределами. Белый — уникальный адрес во всем глобальном интернете.
При поступлении пакета на пограничный роутер IP пакета подменяется на IP этого роутера и вся локальная сеть выходит в глобальную, то есть интернет, под одним единственным IP адресом. Если адрес белый, то часть данных с IP адресом не изменяется.
1. Физический уровень (Transport layer)
Отвечает за преобразование двоичной информации в физический сигнал, который отправляется в физический канал передачи данных. Если это кабель, то сигнал электрический, если оптоволоконная сеть, то в оптический сигнал. Осуществляется это преобразование при помощи сетевого адаптера.
Заключение
Уровни OSI модели позволяют получить общее представление об особенностях передачи данных в сетях. Рассмотренная архитектура является упрощенной. Полная модель ОСИ включает дополнительные уровни: пользовательский, сервисный и т. д. Но для диагностики сетей чаще всего применяется именно упрощенный вариант OSI.
Популярные услуги
Аренда хостинга для сайта
Хостинг сайтов в спб приходится приобретать любой уважающей себя компании. Это нужно для создания и дальнейшей раскрутки сайта. В компании Xelent клиентам на выбор доступна аренда виртуального или vps-сервера.
Виртуальная инфраструктура IaaS на VMware
IaaS на VMware – решение, которое позволяет отказаться от использования физического оборудования и значительно сократить расходы компании.
Публичное облако на базе VMware
Публичное облако на базе VMware позволяет быстро расширить ИТ-инфраструктуру без значительных вложений в модернизацию оборудования.