Силовое оборудование
Оптическое волокно используется не только для передачи информации от одних промышленных установок к другим. Оптоволоконные интерфейсы часто применяются внутри оборудования для связи между его частями. В качестве примера можно привести управление IGBT транзисторами, служащими в качестве электронных ключей в инверторах, импульсных источниках питания и других силовых приборах. Оптоволокно обеспечивает надежную гальваническую развязку между низковольтным микроконтроллером, формирующим управляющие сигналы, и затвором силового транзистора.
Другим устройством силовой электроники, в котором используется оптическое волокно, является статический компенсатор реактивной мощности (SVC – Static VAR Compensator), применяемый в высоковольтных системах для уменьшения нагрузки на распределительную сеть, улучшения качества подаваемой электроэнергии и снижения расходов. Основными элементами SVC являются конденсаторы с тиристорным переключением (TSC – Thyristor-Switched Capacitors) и реакторы с тиристорным управлением (TCR – Thyristor-Controlled Reactor), переключение которых приводит к возникновению сильных электромагнитных полей. Поэтому для передачи управляющих сигналов и сигналов обратной связи в SVC применяется оптическое волокно, невосприимчивое к помехам и обеспечивающую гальваническую развязку.
Удлинители интерфейсов
- Удлинители по витой паре. Обеспечивают передачу видеосигнала на расстояние до 100 метров и более. При этом следует учитывать, что чем больше разрешение видеосигнала, тем меньшее расстояние передачи может обеспечивать удлинитель.
- Удлинители по оптическому волокну. Обеспечивают передачу на сотни метров и даже несколько километров.
- Собственно, само удлинение сигнала на расстояние, измеряемое десятками метров в случае использования витой пары, и сотнями метров в случае использования оптоволокна.
- При смене типа источников сигналов (например, с аналоговых на цифровые), не приходится менять закладные кабели, достаточно сменить приемник и передатчик, то есть налицо сохранение инвестиций.
- В последнее время в области мультимедиа наблюдается стойкая тенденция к передаче всех типов сигналов (аудио, видео, управление) по витой паре. В этом случае на этапе проектирования достаточно предусмотреть прокладку нескольких витых пар, и последующее подключение к ним нужных типов приемников и передатчиков.
- Гальваническая развязка. Если приемник и передатчик получают разнофазное питание, то может возникнуть смещение фазы. Это оказывает влияние на качество передаваемого видеосигнала (мерцание, рябь и даже пропадание сигнала). Одним из способов решения данной проблемы – использование в качестве среды передачи оптического волокна.
- Ширина канала передачи данных. В свете популяризации разрешения UltraHD (4K) этот критерий наиболее важен, потому что видео с качеством 4К требует большей полосы пропускания. И витая пара в этом случае проигрывает оптике.
- Защита от несанкционированного доступа. Невозможно осуществить подключение к кабелю, не обнаружив себя при этом. Любое нарушение целостности оптического кабеля приводит к полному исчезновению сигнала в отличие от витой пары, к которой можно подключиться напрямую и перехватывать информацию.
- Отсутствие воздействия помех на сигнал, передаваемый по оптике. Так как информация передается не в форме электричества, а в виде световых волн — электромагнитные помехи не имеют влияния на передаваемый сигнал.
Тезисы
Оригинальные тезисы публикации (свободный доступ):
Проверка на 75 км проводилась с помощью оптического волокна в лаборатории. Кроме того, были проведены аналогичные «полевые» испытания на настоящей оптической линии (76.6 км) в Мельбурне, Австралия.
Что нужно знать:
Микро-гребень (micro-comb)
Простыми словами — оптический (читай «лазерный») источник. Его спектр состоит из серии дискретных линий, которые находятся на одинаковом расстоянии друг от друга (потому и называется гребень). Кроме того, также называется и сам импульс такого источника. Если вам интересно, вы можете прочитать обзор , который затрагивает основные достижения этой области (81 страница, да, основные достижения, свободный доступ). Кратко можно почитать в Википедии .
Оптический солитон
Это одиночный оптический импульс, который может распространятся в нелинейной среде на большие расстояния без изменения своей формы. Общие сведения можно узнать из статьи в Википедии .
Солитонный кристалл (soliton crystal)
Это упорядоченный во времени ансамбль солитонов, которые «расположены» периодически благодаря модуляции генерирующего их поля. Кристалл он только во времени.
Квадратурная амплитудная модуляция (QAM)
С помощью изменения фазы и амплитуды сигнала, можно увеличить количество передаваемой информации. Фазу смещают на — четверть круга, потому «квадратурная». Число 64 означаем количество разных комбинаций при такой модуляции. Немного подробнее можно прочитать в Википедии .
Пожалуй, пока этого будет достаточно, а остальные термины или не самые очевидные вещи я буду объяснять по ходу.
Кварцевое многомодовое волокно
Кварцевые волокна являются самым известным и распространенным типом оптических волокон. Поскольку многомодовые и одномодовые кварцевые волокна сильно отличаются по своим характеристикам и применению, удобнее рассмотреть их по отдельности.
Многомодовое кварцевое волокно имеет и сердцевину, и оптическую оболочку из кварцевого стекла. Как правило, такое оптоволокно имеет градиентный профиль показателя преломления. Это необходимо, чтобы снизить влияние межмодовой дисперсии. Как было показано выше, моды распространяются в оптическом волокне по разным траекториям, а значит, время распространения каждой моды также отличается. Это приводит к уширению передаваемого импульса. Градиентный профиль уменьшает разницу во времени распространения мод. За счет плавного изменения показателя преломления моды высшего порядка, которые попадают в волокно под бо́льшим углом и распространяются по более длинным траекториям, имеют и бо́льшую скорость, чем те, которые распространяются вблизи сердцевины. Полностью устранить влияние межмодовой дисперсии невозможно, поэтому многомодовое волокно уступает одномодовому по дальности и скорости передачи информации.
Рабочими для многомодового волокна обычно являются длины волн 850 и 1300 (1310) нм. Типичное затухание на этих длинах волн – 3,5 и 1,5 дБ/км соответственно.
Классификация. Кварцевое многомодовое волокно было первым типом волокна, которое стало широко применяться на практике. Распространение получили два стандартных размера многомодовых волокон (диаметр сердцевины/оболочки): 62,5/125 мкм и 50/125 мкм.
Общепринятая классификация многомодовых кварцевых волокон приводится в стандарте ISO/IEC 11801. Этот стандарт выделяет четыре класса многомодовых волокон (OM – Optical Multimode), отличающиеся шириной полосы пропускания (параметр, характеризующий межмодовую дисперсию и определяющий скорость передачи информации):
- OM1 – стандартное многомодовое волокно 62,5/125 мкм;
- OM2 – стандартное многомодовое волокно 50/125 мкм;
- OM3 – многомодовое волокно 50/125 мкм, оптимизированное для работы с лазером;
- OM4 – многомодовое волокно 50/125 мкм, оптимизированное для работы с лазером, с улучшенными характеристиками.
Фраза «оптимизированное для работы с лазером» напоминает о том, что изначальна для передачи сигнала по многомодовому волокну использовались светодиоды (LED). С появлением полупроводниковых лазеров стали разрабатываться волокна более совершенной структуры, названные оптимизированными для работы с лазерами.
Применение. Многомодовое волокно применяется в непротяженных линиях связи (обычно сотни метров), причем волокно 50/125 мкм (OM2, OM3, OM4) используется в основном в локальных сетях и дата-центрах, а волокно 62,5/125 мкм часто применяется в индустриальных сетях. В гигабитных приложениях рекомендуется применять волокна классов OM3 и OM4. Причина, по которой многомодовое волокно до сих пор не вытеснено одномодовым волокном, обладающим лучшими характеристиками, заключается в меньшей стоимости компонентов линии (активное оборудование, соединительные изделия). Цена снижается из-за большего диаметра сердцевины многомодового волокна, и, соответственно, меньших требований к точности изготовления и монтажа компонентов.
Типы волоконно-оптических кабелей
В зависимости от исполнения, различают кабели для внутренней или внешней прокладки, или универсальные.
Внутренние волоконно-оптические кабели подходят для помещений, включая вертикальные и запотолочные варианты прокладки. Для облегчения монтажа разъемов каждое волокно покрывают оболочкой из пластика толщиной 900 микрон. Волокна, усиливают арамидными нитями и помещают в общую огнестойкую термопластичную оболочку. Как правило, пучки из 6 или 12 волокон объединяют, добавляют центральный силовой элемент для фиксации волокон и обеспечения заданной формы. Внутренние ОВ кабели производят с числом волокон от 2 до 144.
Внешние ОВ кабели прокладывают между зданиями различными методами: открыто, в трубах и подземных кабелепроводах. Для защиты от влаги и перепадов температур волокна помещают в трубки, заполненные водозащитным гелем. В одной трубке размещают до 12 оптических волокон. 12-ти волоконный кабель включает одну заполненную гелем трубку с волокнами, водозащитную ленту вокруг трубки, арамидные волокна для придания прочности, помещенные в устойчивую к ультрафиолетовому излучению водозащитную пластиковую оболочку.
Для наружного кабеля с более чем 12 волокнами несколько трубок, как правило, по 6 или 12 волокон, собираются вместе с центральным силовым элементом. Эта сборка покрывается водозащитной лентой и помещается в такую же кабельную оболочку из полиолефинов.
Для дополнительной механической защиты или защиты от грызунов применяют гофрированный алюминий, стальное армирование или двойную оболочку. Число волокон, как правило, составляет от 12 до 144.
Универсальные волоконно-оптические кабели совмещают ультрафиолетовую защиту и водонепроницаемость внешних кабелей в сочетании с определенным уровнем огнезащиты, предъявляемой для внутренних кабелей.
В большинстве стран универсальный кабель допускается для внутренней прокладки без ограничений. В США, где определяются дополнительные требования пожаробезопасности к запотолочным и вертикальным кабелям, максимально допустимая длина универсального кабеля в здании не должна превышать 15 метров.
Конструкция универсальных кабелей подобна конструкции внешних, за тем исключением, что волокна могут размещаться либо в свободных трубках, либо в плотной оболочке диаметром 900 микрон. При равном числе волокон универсальные кабели в свободной трубке имеют меньший внешний диаметр по сравнению с кабелями с волокнами в плотном буфере. В практическом плане, волокна в плотном буфере проще оснащать разъемами, поскольку отсутствует водозащитный гель.
Технология xPON — оптика в дом
Аббревиатура PON расшифровывается, как Passive Optical Network и в переводе на русский язык означает «пассивная оптическая сеть». При этом xPON — это всё семейство технологий, связанных с мультисервисным широкополосным доступом через оптическое волокно.
Если смотреть глазами обычного пользователя, то xPON — это тонкий желтенький оптический кабель, который приходит в дом или квартиру, принося с собой высокоскоростной Интернет, телевидение и телефон.
А вот если взглянуть на всё глазами кабельного провайдера, то технология xPON — это ведущая на сегодня технология предоставления услуг ШПД для абонентов любого сегмента — от обычных квартир и домов, до крупных корпоративных клиентов. Какие её основные плюсы?
Ключевые преимущества xPON:
- Высокая скорость — до 2,5 Гбит/с. В ближайшей перспективе — до 10 Гбит/с.;
- Надёжное качественное соединение. Не зависит от погоды, отличная помехоустойчивость;
- Возможность предоставления целого комплекса услуг разом используя всего лишь один кабель, т.е. одну выделенную линию;
- Максимальное расстояние до абонента до 40 километров;
- Отсутствие дополнительного активного оборудования между станцией и абонентом. Не надо платить за аренду.
Главная цель любого современного оператора связи — это уйти от меди по максимуму. Тем более, что в последние годы стоимость строительства ВОЛС (Волоконно-Оптических Линий Связи) и соответствующего оборудования значительно снизилась. Таким образом отказ от медного кабеля стал экономически целесообразным. Например, Ростелеком с 2020 года фактически запретил у себя строительство медных линий. На этот же путь встаёт и Дом.ru. Отдельно можно выделить компанию «Сибирский Медведь» которая сразу начала со строительства пассивных оптических сетей.
Основные недостатки xPON:
К сожалению без ложки дёгтя не обошлось. Как и у любой другой, у технологии xPON есть и ряд минусов, которые для небольших Интернет-провайдеров становятся непреодолимым препятствием.
- Развёртывания сети только кластерами;
- Стоимость строительства кластера пока ещё высока;
- Дроп-кабель и оптический шнур легко повредить;
- Необходимость в квалифицированном обученном персонале и сопутствующем оборудовании;
- Скудный ассортимент абонентских терминалов ONT;
- Сложности при переносе или удлинении кабеля.
Именно затраты на модернизацию существующей или строительство новой сети кластерами, закупку специального оборудования и подготовку квалифицированного персонала мешают многим провайдерам начать стройку PON-сетей. Особенно это касается регионов.
Категории кабеля витая пара
Существует несколько категорий кабеля витая пара, которые определяют эффективный пропускаемый частотный диапазон. Кабель более высокой категории обычно содержит больше пар проводов и каждая пара имеет больше витков на единицу длины.
- Кабель категории 1 — это обычный телефонный кабель (пары проводов не витые), по которому можно передавать только речь, но не данные. Данный тип кабеля имеет большой разброс параметров (волнового сопротивления, полосы пропускания, перекрестных наводок).
- Кабель категории 2 — это кабель из витых пар для передачи данных в полосе частот до 1 МГц. Кабель не тестируется на уровень перекрестных наводок. В настоящее время он используется очень редко. Стандарт Е1А/Т1А 568 не различает кабели категорий 1 и 2.
- Кабель категории 3 — это кабель для передачи данных в полосе часто до 16 МГц, состоящий из витых пар с девятью витками проводов на метр длины. Кабель тестируется на все параметры и имеет волновое сопротивление 100 Ом. Это самый простой тип кабелей, рекомендованный стандартом для локальных сетей.
- Кабель категории 4 — это кабель, передающий данные в полосе частот до 20 МГц. Используется редко, так как не слишком заметно отличается от категории 3. Стандартом рекомендуется вместо кабеля категории 3 переходить сразу на кабель категории 5. Кабель категории 4 тестируется на все параметры и имеет волновое сопротивление 100 Ом.
- Кабель категории 5 — самый совершенный кабель в настоящее время, рассчитанный на передачу данных в полосе частот до 100 МГц. Состоит из витых пар, имеющих не менее 27 витков на метр длины (8 витков на фут). Кабель тестируется на все параметры и имеет волновое сопротивление 100 Ом. Рекомендуется применять его в современных высокоскоростных сетях. Кабель категории 5 примерно на 30-50% дороже, чем кабель категории 3.
- Кабель категории 6 — перспективный тип кабеля для передачи данных в полосе частот до 200 МГц.
- Кабель категории 7 — перспективный тип кабеля для передачи данных в полосе частот до 600 МГц.
Почему свет, а не электричество
Свет или лазерный луч (если быть точным) используется для связи по оптоволокну из-за того, что лазерный луч является источником света с одной длиной волны. В то время как другие световые сигналы, такие как солнечный свет или лампа накаливания, имеют много длин волн света, и в результате, если они используются для связи, они будут генерировать луч, который является очень менее мощным, и, с другой стороны, лазер, имеющий единственный луч, даст более мощный луч в качестве выхода.
Таким образом, меньшее рассеивание, передача большего количества сигналов и использование меньшего количества времени делают такой свет хорошим источником связи.
Использование оптического кабеля
оптический кабель
- Высокая полоса пропускания для передачи голоса или видеоизображения.
- Оптические волокна могут нести в тысячи раз больше информации, чем медная проволока. Например, всего одна прядь волокна может передавать все телефонные разговоры Америки в час пик.
- Оптический кабель легче чем медь примерно в 10 раз.
- Низкие потери. Чем выше частота сигнала, тем больше потерь в медной паре. Потери сигнала в оптическом кабеле одинаковы на всех частотах, за исключением сверхвысоких частот.
- Надежность – оптический кабель более надежен и имеет большее время жизни, чем медный кабель.
- Защищенность – оптические волокна не излучают электромагнитных полей, нечувствительны к помехам.
Физический механизм передачи оптических сигналов
В современном приложении оптические кабели подразделяются на многомодовые (MM) и одномодовые (SM), однако и те и другие базируются на одних и тех же принципах. Передача сигнала по оптическому кабелю возможна благодаря явлению, которое называется полным внутренним отражением. Благодаря этому возможна передача оптического сигнала на высокой скорости на большие расстояния.
Одномодовый оптический кабель или многомодовый?
SM и MM кабели различаются по своим размерам, что в свою очередь, влияет на проходящий по оптоволокну сигнал. SM кабели используют толщину основного волокна от 8 до 10 микрон, что позволяет передавать только одну длину волны. MM кабели, напротив, используют более толстое основное волокно примерно 50-60 микрон, что позволяет передавать несколько длин волн одновременно. В SM кабелях меньше величина затухания, что дает возможность использовать их на больших расстояниях. MM кабель позволяет передавать больше данных. Т.о. MM кабель обычно используется на небольших расстояниях, там где необходимо передавать данные с большой скоростью, например в системах хранилищ данных.
Строительные блоки волоконно-оптических систем
Типичная схема оптоволоконной системы состоит из передатчика, оптического кабеля и приемника. Передатчик преобразовывает цифровые электрические сигналы в оптические, которые дальше передаются по оптическому кабелю, обеспечивая высокую скорость передачи и независимость от электромагнитных помех. Оптический кабель состоит из оптического волокна и двух разъемах на концах, обычно ST, SC, или FC, в зависимости от конфигурации приемника и передатчика. Оптическое волокно состоит из центрального волокна толщиной несколько микрон, оболочки, которая обеспечивает полное оптическое отражение сигнала и внешней оплетки, которая обеспечивает защиту и идентификацию оптического кабеля. Таким образом, строительство и эксплуатация волоконно-оптических систем является аппаратно-ориентированной на передачу сигнала на большие расстояния. Зачастую задача именно так и ставится: с помощью оптического кабеля передать с низким затуханием высокоскоростной сигнал на большое расстояние с приемлемым уровнем финансовых затрат.
Конструкция оптического кабеля
Оптическое волокно состоит из нескольких элементов. Оптический кабель состоит из нескольких элементов: из сердцевины, облицовки и внешнего покрытия. В основе оптического кабеля лежит сердцевина, по которой происходит передача световых сигналов. В основе сердцевины лежит кремний и германий. Оболочка, окружающая сердцевину оптического кабеля состоит из кремния и имеет коэффициент преломления несколько ниже центральной сердцевины. Показатель преломления – это отношение скорости света в вакууме к скорости света в материале. Скорость света в вакууме равна 300 000 000 метров в секунду. Чем выше показатель преломления, тем ниже скорость света в материале. Например, коэффициент преломления света в чистом воздухе равен 1, что означает скорость света в воздухе 300 000 км/c. Коэффициент преломления в стекле 1,5, что означает скорость света в стекле 200 000 км/c.
Оптический кабель
Несколько слоев буферных обшивок защищают центральную жилу. Защита служит для уменьшения физических нагрузок на кабель, таких как растяжение, изгиб и т.п. Наружная оплетка защищает от внешних воздействий, таких как экологические (температура, влажность, агрессивная среда). Для соединения оптического кабеля наиболее часто используется SC коннекторы. SC коннектор обеспечивает наибольшую плотность упаковки. Системные администраторы должны учитывать особенности оптического кабеля и активного оборудования для выбора соответствующего типа коннектора.
Оптический кабель. Коннекторы.
Длина волоконно-оптических каналов
В отличие от симметричных электропроводных кабелей волоконно-оптические кабели можно считать зависимыми от приложений. Это означает, что такие факторы, как длина канала, скорость передачи данных и стоимость оборудования влияют на выбор типа кабеля.
Спецификации стандартов определяют геометрические размеры сердцевины и оболочки волокна, и оптические параметры, такие как затухание и полоса пропускания
Важно иметь в виду, что это характеристики самого волокна, определяемые до того, как оно помещено в кабель
Национальная (TIA – Telecommunications Industry Association – США) и международная организации стандартизации (ISO – International Organization for Standardization) используют эти параметры волокна, чтобы потом указать требования и определить категории волоконно-оптических кабелей.
Выбор категории ОВ кабеля полезно начать со сравнения параметров. На первый взгляд кажется, что одномодовые кабели являются наилучшим выбором для всех условий. Однако, требуется учесть затраты на оборудование и особенности реализации приложений. В частности, одномодовая оптоэлектроника рассчитана на более мощные и качественные источники света и может стоить в 2 — 4 раза больше, чем многомодовые лазеры. Кроме того, многомодовые кабели, как правило, проще оснащать разъемами в полевых условиях, чем одномодовые.
Наконец, для некоторых приложений, например 10GBase-LX4, используется четыре отдельных лазерных источника для передачи по одному волокну, а оборудование, использующее технологии мультиплексирования, значительно дороже, чем оптоэлектроника, обеспечивающая передачу на одной длине волны.
Хорошее эмпирическое правило состоит в том, чтобы считать многомодовый волоконно-оптический кабель наиболее экономически эффективным выбором для каналов длиной до 550 метров. Это правило справедливо для гигабитных приложений. Для 10 гигабитных протоколов длина канала уменьшается до 220-300 метров. Скорость 40 и 100 Гбит/с сокращает длину многомодового кабеля до 100-125 метров.
Таблица 1. Максимальная длина оптоволоконного канала в зависимости от категории кабеля для разных приложений, м
Максимальная длина USB удлинителя.
По стандарту, максимальная длина кабелей и удлинителей USB 1.0 не должна превышать пять метров для режима Full-Speed (скорость 12 Мбит/с). Но это общий случай – минимальная спецификация для гарантированной работы любого USB устройства.
На практике же все намного интереснее. Все зависит от конкретного UTP кабеля — шага свивки витой пары, толщины проводников, одножильности или многожильности проводников, материала проводников и изоляции, наличии экрана. Работа USB удлинителя подчинена сложной теории передачи высокочастотных сигналов. То есть, физически, USB кабель не просто шнурок из четырех проводов, а высокочастотная симметричная линия связи.
На максимальную длину USB удлинителя влияет так же и падение питающего напряжения. По этому, питание 5 вольт в USB удлинителе необходимо подавать по запараллеленым трем витым парам для увеличения сечения линии питания.
Мне удавалось делать USB удлинители из витой пары максимум длиной до 20 метров. Более длинные удлинители уже переставали работать – высокочастотный сигнал затухал, либо напряжение питания существенно падало на проводах. Ниже, я приведу все встречавшиеся мне причины не работы USB удлинителя.
Необходимое оборудование для передачи информации по оптоволоконному кабелю
На сегодняшний день оптоволоконные сети получили широкое распространение среди компаний, предоставляющих своим абонентам доступ к интернету. При этом, для осуществления передачи данных, если не считать промежуточных муфт и прочего сопутствующего оборудования, используется следующая техника:
со стороны провайдера: — специальное оборудование DLC, известное также под названием мультиплексор. Оно позволяет производить передачу данных по волоконно-оптическому кабелю на значительные расстояния с постоянно поддерживаемой высокой скоростью.
со стороны абонента: — роутер ONT, который является оконечным клиентским оборудованием и позволяет обеспечить доступ к интернету через оптоволоконную сеть. Позволяет осуществлять доступ на скорости до 2.5 Гбит/с.
Описание технологии, конструкция кабеля
Людям, которые хотят подключить интернет по оптоволокну, следует детальнее ознакомиться с конструкцией оптического провода. На самом деле у него довольно простое устройство.
В центральной части располагается стекловолоконный световод диаметром около 7-8 мкм. Он покрыт специальной защитной оболочкой, сделанной из пластика. Она не только защищает световод от механических повреждений, но и обеспечивает внутреннее отражение света.
В процессе передачи данных свет не покидает пределы центральной жилы и не сталкивается с электромагнитными помехами. Именно поэтому такие кабели не нуждаются в дополнительном экранировании.
Надежная наружная оболочка провода защищает его от механических повреждений
Чтобы оптический интернет стабильно работал и не было обрывов связи, оптоволоконный провод делают максимально прочным. Для уплотнения используют кевлар и металл. Благодаря такому надежному бронированию, кабели из оптического волокна защищены от механических повреждений.
Оптические провода могут отличаться по своим конструкционным особенностям:
- Стеклянное волокно, размещенное внутри оболочки из пластика. Кабель такого типа менее надежный и не очень часто используется во время проведения интернета.
- Многослойный провод. Он изготавливается с дополнительными упрочняющими компонентами. Подходит для прокладки в грунте или под водой.
Есть и другая классификация, согласно которой оптику можно поделить на два основных типа:
- Одномодовый. Такие провода изготавливаются из световода диаметром в 1,3 мкм. Одномодовая оптика более качественная и чаще всего используется при подключении интернета в частных домах и квартирах.
- Многомодовый. От предыдущего типа провода отличается тем, что в нем используется не лазерный, а обычный световод. При этом длина световой волны довольно короткая и составляет всего 0,85 мкм.
Какие имеет ограничения
Оптический кабель подходит для прокладывания под водой
Многих интересует, есть ли у стекловолокна для интернета какие-то ограничения. На самом деле оптические кабели далеко не идеальны и имеют свои недостатки.
Главный минус заключается в том, что они не могут обеспечивать идеальный сигнал. Например, большинство проводов оптического типа обеспечивают максимальную скорость передачи данных 10 Гбит/с только на расстоянии 100-200 км. После этого начинается постепенное затухание сигнала и соответственно ухудшение скорости. Однако пользователи сети Internet этого не замечают.
Дело в том, что оптику прокладывают только до многоквартирного дома. До квартир протягивается обычная витая пара. Это приводит к ограничению скорости. Поэтому, чтобы насладиться максимально быстрой передачей данных, придется проводить оптику напрямую в квартиру и подключать специальное оборудование для оптоволоконного интернета.
Оптоволокно
Волоконно-оптические кабели используют небольшие стеклянные волокна для передачи данных с использованием импульсов света. Свет распространяется так же, как и электричество через медный провод, но преимущество заключается в том, что волоконные кабели могут одновременно передавать сразу несколько сигналов. Они невероятно малы, поэтому их часто объединяют в более крупные кабели под названием «волоконно-оптические магистральные кабели», каждая из которых содержит несколько волоконных линий. Волоконные кабели содержат огромное количество данных, а средняя скорость, которую Вы увидите у себя дома, составляет около 1 Гбит/с (часто называемый «гигабитный интернет»).
Волоконные магистральные кабели образуют основную часть современного Интернета, и Вы увидите их преимущества, даже если у Вас нет «волоконного интернета». Это связано с тем, что точки обмена через Интернет (IXP) — коммутационные и маршрутизационные станции которые соединяют Ваш дом с остальной частью мира — используют волоконно-оптические магистральные линии для подключения к другим IXP.
Но когда придет время соединить все дома в городе с Вашим местным IXP (термин, который обычно называют «последней милей»), Ваш провайдер обычно будет использовать традиционный коаксиальный кабель для Вашего дома. Этот вариант становится узким местом для Вашей интернет-скорости. Когда кто-то говорит, что у них есть «оптоволоконный интернет», они имеют в виду, что подключение из их дома к IXP также использует волокно, исключая ограничение скорости медного кабеля.